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Abstract

This paper deals with the three-dimensional analysis of ideal fluid flow in a
long circular cylinder containing an ellipsoidal obstacle. The center of the
ellipsoid coincides with that of the cylinder, and the flow is confined to the
space between the ellipsoid and the cylinder when the fluid velocity at the large
distance from the ellipsoid is uniform. The equations of the classical theory of
fluid dynamics are solved in terms of an unknown function which is then shown
to be the solution of a boundary integro-differential equation. An analytical
solution of the integro-differential equation is obtained for the moderate values
of the radius of the cylinder. The pressure on the ellipsoid is obtained by using
Bernoulli’s equation and is presented in graphical forms for various values of
the radius of the circular tube. The problem of viscous fluid when the ellipsoid
reduces to a spheroid is also investigated.

PACS number: 47.15 Hg

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It has been a long time since the study on the flow around a spherical and non-spherical object
in a tube began. The investigations varied from the vortical to irrotational flow and from the
inviscid to viscous flow. The problem of determining the distribution of vector potential in a
long circular cylinder containing a spherical or a spheroidal obstacle has been investigated by
Smithe [1, 2]. The problem of flow around a sphere in a tube has also been investigated by
others [3, 4]. However, little attention has been paid to the analytical solution concerning a
triaxial ellipsoidal obstacle, as a special case of which the analysis on spheres or spheroids can
be dealt. The motion of a viscous liquid past an ellipsoid in an unbounded space was however
investigated by Venkates [5].
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In more recent years, numerical studies on the motion of an ellipsoid in a circular tube
have appeared. Sugihara-Seki [6] studied numerically the motions of an ellipsoidal particle
in a tube flow. She used a finite-element method to solve the Stokes equations for flow
around a spheroid placed at various positions in the tube. The instantaneous velocity was
used to compute the particle trajectories. Swaminathan et al [7] have used direct numerical
simulations to investigate the motion of an ellipsoid settling in an infinitely long circular tube,
under the influence of gravity, at low and intermediate Reynolds numbers. They examined the
issue of damping of the oscillatory motion for different cases of particle inertia.

Information on the potential flow around an ellipsoid will be of value to the circumstances
that occur in a wind tunnel, to a circular cylindrical flow with bubbles or to an electrical flow in
a circular cylindrical conductor with defects that can be approximated by a triaxial ellipsoid.

Applications of the study on such flow can be made in a broad range of biological and
engineering fields; examples include flow due to the motion of proteins in various biomedical
applications, the motion of red blood cells in narrow capillaries and the transport of encapsuled
solid matter in pipelines.

In this paper, we derive the solution of the problem determining the distribution of potential
in a long circular cylinder containing a triaxial ellipsoid whose center coincides with that of
the cylinder when the flow is uniform at the large distance from the ellipsoid.

In section 2, we investigated an inviscid fluid. By the use of the field equations, and
employing Fourier transform, the boundary integro-differential equation is derived in which the
unknown function is subsequently solved by the iterative method. In section 3, we investigated
a viscous fluid. In section 4, some numerical examples are given and comparisons with the
existing published accounts are made.

2. Inviscid flow about a triaxial ellipsoid

In this section we discuss the inviscid flow about a triaxial ellipsoid in a tube. Consider a
circular cylinder with a radius, h, having an ellipsoid whose semi-axes are a, b and c. We take
the center of the ellipsoid and the cylinder as the origin of the Cartesian coordinates, and, x-,
y- and z-axis along semi-axes of the ellipsoid, respectively, then the ellipsoid occupies the
region V which is governed by the equation x2

a2 + y2

b2 + z2

c2 � 1. The surface of the ellipsoid
is denoted by S. We shall also use cylindrical coordinates (r, θ, z) which are connected to the
Cartesian coordinates by

x = r cos θ, y = r sin θ, z = z.

Let the velocity of the flow at the large distances from the ellipsoid be v0. Then the suitable
form of potential function is

φ(x, y, z) = ∂

∂z

∫
V

f (u, v,w) du dv dw√
(x − u)2 + (y − v)2 + (z − w)2

+ v0z

+
∞∑

m=0

cos mθ

∫ ∞

−∞
Bm(ξ)Im(ξr) e−iξz dξ, (2.1)

where Im is the modified Bessel function of the first kind. It can be easily seen that the function
φ in (2.1) is a harmonic function. The boundary condition satisfied on the wall is

∂φ

∂r
= 0 at r = h. (2.2)

Thus we have
∂2

∂r∂z

∫
V

f (u, v,w) dv

R(x − u)

∣∣∣∣
r=h

+
∞∑

m=0

cos mθ

∫ ∞

−∞
Bm(ξ)ξI ′

m(ξh) e−iξz dξ = 0,
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where

R(x − u) =
√

(x − u)2 + (y − v)2 + (z − w)2

and dv is used for du dv dw. If we take the Fourier transform of the above equation, we get

−
∞∑

m=0

cos mθBm(ξ)ξI ′
m(ξh) = 1

2π

∂

∂r

∫ ∞

−∞

(
∂

∂z

∫
V

f (u, v,w) dv

R(x − u)

)
eiξz dz

∣∣∣∣
r=h

. (2.3)

If we once integrate by parts on the right-hand side of the above equation, and make use of
the known integral in Erdélyi [8] and Watson [9]∫ ∞

0

cos(ξz) dz√
(x − u)2 + (y − v)2 + z2

= K0(ξ
√

(x − u)2 + (y − v)2), (2.4)

we find that
∞∑

m=0

cos mθBm(ξ)ξI ′
m(ξh) = i

π

∫
V

f (u, v,w) eiξw

× ∂

∂h
{K0(ξ

√
(x − u)2 + (y − v)2)} dv. (2.5)

Now

K0(ξ
√

(x − u)2 + (y − v)2) = K0
(
ξ{r2 + r ′2 − 2rr ′ cos(θ − θ ′)} 1

2
)

= I0(ξr<)K0(ξr>) + 2
∞∑

m=1

cos{m(θ − θ ′)}Im(ξr<)Km(ξr>), (2.6)

where r< = min(r, r ′), and r> = max(r, r ′) and K0,Km are the modified Bessel functions of
the second kind and we have set

u = r ′ cos θ ′, v = r ′ sin θ ′. (2.7)

If we use (2.6) in (2.5), we find that

Bm(ξ) = εm

i|ξ |K ′
m(|ξ |h)

πI ′
m(ξh)

∫
V

f (u, v,w) eiξwIm(|ξ |r ′) cos mθ ′dv, (2.8)

where

εm =
{

1, if m = 0

2, otherwise.

In (2.8), the term involving sin mθ ′ vanishes, as f (u, v,w) is an even function of u and v. If
we substitute Bm(ξ) from (2.8) into (2.1), we obtain the following form of potential function:

φ = ∂

∂z

∫
V

f (u, v,w) dv

R(x − u)
+ v0z +

∫
V

f (u, v,w)K(r, θ, z; r ′, θ ′, w) dv, (2.9)

where

K(r, θ, z; r ′, θ ′, w) = − 2

π

∞∑
m=0

εm

∫ ∞

0

ξK ′
m(ξh)

I ′
m(ξh)

Im(ξr ′)Im(ξr)

× sin ξ(w − z) dξ cos mθ ′ cos mθ. (2.10)

The normal velocity of the fluid on the surface of the ellipsoid is zero. Therefore we have the
following boundary integro-differential equation:

∂2

∂n∂z

∫
V

f (u, v,w) dv

R(x − u)
+ v0

∂z

∂n
+

∂

∂n

∫
V

f (u, v,w)K(r, θ, z; r ′, θ ′, w) dv

= 0, (x, y, z) ∈ S, (2.11)

3
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where ∂/∂n indicates the differentiation in the direction normal to the surface of the ellipsoid.
In (2.10) we set ζ = ξh, then

K(r, θ, z; r ′, θ ′, w) = − 2

π

∞∑
m=0

εm

∫ ∞

0

ζK ′
m(ζ )

h2I ′
m(ζ )

Im

(
ζ

h
r ′

)
Im

(
ζ

h
r

)

× sin
ζ

h
(w − z) dζ cos mθ ′ cos mθ, (2.12)

and if we expand (2.12) in terms of 1/h, we have

K(r, θ, z; r ′, θ ′, w) = − 2

π

[
1

h3
(w − z)J2 +

1

h5

{
w − z

4
(r2 + r ′2) − (w − z)3

6

}
J4

]
+ O(h−6),

(2.13)

where Jn is defined by

Jn = −
∫ ∞

0

K1(ζ )

I1(ζ )
ζ n dζ.

So f (u, v,w) is of the form:

f (u, v,w) = f0(u, v,w) +
1

h3
f1(u, v,w) +

1

h5
f2(u, v,w) + · · · . (2.14)

As we stopped at the third term in the infinite expansion in (2.14), the accuracy falls off when
h
a∗ is near to 1, where a∗ = max(a, b). Here, we assume that the size of the obstacle is small
compared to the radius of the tube.

We have zeroth-order solution by solving

∂2

∂n∂z

∫
V

f0(u, v,w) dv

R(x − u)
= −v0

∂z

∂n
. (2.15)

Let (λ, μ, ν) be the usual ellipsoidal coordinates, then the normal derivative of φ on the
ellipsoid can be expressed as

∂φ

∂n
= 2

D0

(
∂φ

∂λ

)
λ=0

,

where

D2
0 = x2

a4
+

y2

b4
+

z2

c4
.

So the suitable solution f0 of (2.15) is f0 = constant. We determine f0 as follows. To do so
we use the following formula:∫

V

dv

R(x − u)
= πabc

∫ ∞

λ

(
1 − x2

a2 + s
− y2

b2 + s
− z2

c2 + s

)
ds

�(s)
, (2.16)

where �(s) =
√

(a2 + s)(b2 + s)(c2 + s) and λ is the greatest root of

1 − x2

a2 + λ
− y2

b2 + λ
− z2

c2 + λ
= 0.

From (2.15) we obtain

f0 = v0

2π(γ0 − 2)
, (2.17)

where γ0 is defined by

γ0 = abc

∫ ∞

0

ds

(c2 + s)�(s)
. (2.18)

4
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The solution of the order of h−3 is obtained similarly, and we find f1 as

f1 = 4f0J2abc

π(γ0 − 2)3
. (2.19)

The problem of the order of h−5 is

∂2

∂n∂z

∫
V

f2(u, v,w) dv

R(x − u)
= − 2z

3c2D0
f0J4abc

×
{

1

5
(a2 + b2 − 2c2) + x2

(
1 +

2c2

a2

)
+ y2

(
1 +

2c2

b2

)
− 2z2

}
. (2.20)

Then the suitable form of the solution of (2.20) is as follows:

f2(u, v,w) = A0 + A1u
2 + A2v

2 + A3w
2. (2.21)

Proceeding as before we find

A0 = J4f0(a
2 + b2 − 2c2)abc

15π(γ0 − 2)
.

To find A1, A2 and A3, we utilize the following formulae found in Ferrers [10]∫
V

u2dv

R(x − u)
= πabc

∫ ∞

λ

{
a2s

4(a2 + s)
ω2(s) − a4x2

(a2 + s)2
ω(s)

}
ds

�(s)∫
V

v2dv

R(x − u)
= πabc

∫ ∞

λ

{
b2s

4(b2 + s)
ω2(s) − b4y2

(b2 + s)2
ω(s)

}
ds

�(s)∫
V

w2dv

R(x − u)
= πabc

∫ ∞

λ

{
c2s

4(c2 + s)
ω2(s) − c4z2

(c2 + s)2
ω(s)

}
ds

�(s)
,

where

ω(s) = x2

a2 + s
+

y2

b2 + s
+

z2

c2 + s
− 1.

After a long computation we obtain the following simultaneous equation for A1, A2 and A3:⎛
⎝b11 b12 b13

b21 b22 b23

b31 b32 b33

⎞
⎠

⎛
⎝A1

A2

A3

⎞
⎠ = − f0J4

3πc2

⎛
⎜⎝

1 + 2c2/a2

1 + 2c2/b2

−2

⎞
⎟⎠ , (2.22)

where

b11 = I2,0,0a
2

(
1

a2
+

1

2c2

)
− I1,0,0

2c2
− I2,0,1a

2

(
5

2
+

c2

a2
+

a2

c2

)
+

I1,0,1

2
+

2

abc3
, (2.23)

and b12, . . . , b33 are listed in the appendix. In (2.23) I�,m,n is defined by

I�,m,n =
∫ ∞

0

1

(a2 + s)�(b2 + s)m(c2 + s)n

ds

�(s)
. (2.24)

To evaluate (2.24) we let

s = (a2 − c2)sn−2u

and use the following identities for the Jacobian elliptic functions:

k2 sn2u + dn2u = 1

and

k =
√

a2 − b2

a2 − c2
, k′2 = 1 − k2.

5
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So∫ ∞

0

1

(a2 + s)�(b2 + s)m(c2 + s)n

ds

�(s)
= 2

(a2 − c2)�+m+n+ 1
2

∫ F

0

sn2�+2m+2nu du

dn2mu cn2nu
, (2.25)

where

F =
∫ θ

0
(1 − k2 sin2 u)−

1
2 du, θ = sin−1

(√
a2 − c2

a

)
. (2.26)

The integral on the right-hand side of (2.25) is

L�,m,n =
∫ F

0

sn2�+2m+2nu du

dn2mu cn2nu
= 1

k′2�+2m+2n

�+m+n∑
j=0

(−1)j
(

� + n + m

j

)

×
∫ F

0
dn2�+2n−2j u nc2n−2ju du. (2.27)

Further

L�,m,n = 1

k′2�+2m+2n

⎡
⎣ �+n∑

j=0

(−1)j
(

� + n + m

j

)∫ F

0
(k′2 + k2 cn2u)�+n−j nc2n−2j u du

+
�+m+n∑

j=�+n+1

(−1)j
(

� + n + m

j

) ∫ F

0
nd2j−2�−2nu

(
dn2u − k′2

k2

)j−n

du

⎤
⎦ . (2.28)

Expanding the powered terms by using the binomial expansion, we find

L�,m,n = 1

k′2�+2m+2n

⎡
⎣ �+n∑

j=0

�+n−j∑
i=0

(−1)j
(

� + n + m

j

)(
� + n − j

i

)
k′2i

× k2�+2n−2j−2iC2�−2i +
�+m+n∑

j=�+n+1

j−n∑
i=0

(−1)j+i

(
� + n + m

j

)(
j − n

i

)
k′2ik2n−2kG2�−2i

⎤
⎦ ,

(2.29)

where

C2n =
∫ F

0
cn2nu du, G2n =

∫ F

0
dn2nu du.

We have the following reduction formula for C2n in Byrd and Friedman [11, p 194]:

C2n+2 = 2n(2k2 − 1)C2n + (2n − 1)k′2C2n−2 + sn F dn F cn2n−1 F

(2n + 1)k2
, (2.30)

if � − i < 0, we find C−2n = D2n where

D2n+2 = (2n − 1)k2D2n−2 + 2n(1 − 2k2)D2n + tn F dn F nc2n F

(2n + 1)k′2 . (2.31)

Also we have the following reduction formula for G2n:

G2n+2 = k2 dn2n−1F sn F cn F + (1 − 2n)k′2G2n−2 + 2n(2 − k2)G2n

(2n + 1)
, (2.32)

if � − i < 0, we find G−2n = I2n where

I2n+2 = 2n(2 − k2)I2n + (1 − 2n)I2n−2 − k2 sn F cn Fnd2n+1F

(2n + 1)k′2 . (2.33)

6
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Thus, finally, we see that one needs the following starting values for evaluating the general
terms of C2n,D2n,G2n and I2n:

C0 = D0 = F, C2 = 1

k2
[E − k′2F ], D2 = 1

k′2 [k′2F − E + dn F tn F ],

where E is the elliptic integral of the second kind of modulus k and argument θ given in (2.26)
and

G0 = I0 = F, G2 = E, I2 = 1

k′2 [E − k2 sn F cd F ]

and

sn F =
√

a2 − c2

a
, cn F = c

a
, dn F = b

a
.

The final solution is given by (2.9) with f (u, v,w) replaced by (2.14) where f0, f1, f2 are
now (2.17), (2.19) and (2.21), respectively. The kernel is substituted by (2.13). Therefore as
h approaches to infinity, the potential function φ is now

φ = ∂

∂z

∫
V

f0(u, v,w) dv

R(x − u)
+ v0z = v0zabc

2 − γ0

∫ ∞

λ

ds

(c2 + s)�(s)
+ v0z, (2.34)

This solution is in complete agreement with that in Lamb [10, p 153]. When the ellipsoid
reduces to a sphere, the solution greatly simplifies and it is recorded as follows:

φ =
(

v0a
3

2

cos ϕ

ρ2
+ v0ρ cos ϕ

)(
1 − 1

h3

a3

π
J2

)

− 1

h5
v0(3 cos ϕ − 5 cos3 ϕ)

(
a10

4ρ4
+

a3ρ3

3

)
J4

4π
, (2.35)

where ϕ is the azimuthal angle and ρ is the radius in spherical coordinates and a is the radius
of the sphere.

The stream function is as follows:

ψ =
(

−v0
a3

2

sin2 ϕ

ρ
+

v0

2
ρ2 sin2 ϕ

)(
1 − 1

h3

a3

π
J2

)

+
1

h5
v0(sin2 ϕ − 5 cos2 ϕ sin2 ϕ)

(
a10

ρ3
− a3ρ4

)
J4

16π
, (2.36)

As h tends to infinity, the potential function and the stream function, given by (2.35) and
(2.36), respectively, completely agree with those found in Streeter [13, p 67]. Also we can
immediately see from (2.35) and (2.36) that the normal velocity and stream function are zero
on the surface of the sphere which also confirms the correctness of our solution.

3. Viscous flow about a spheroid

In this section we consider the Stokes problem for spheroids when the fluid is viscous. The
fluid velocity u and the pressure p satisfy the Stokes equation and the continuity equation:

∇p = μ∇2u, (3.1)

∇ · u = 0, (3.2)

where μ is the coefficient of viscosity. Let u = (ux, uy, uz) be the velocity components in
Cartesian coordinates. If we choose the velocity components as

ux = 2Bx − ∂�

∂x
, uy = 2By − ∂�

∂y
, uz = 2Bz − ∂�

∂z
, (3.3)

7
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where � is defined by

� = B0 + xBx + yBy + zBz

with B0, Bx, By, Bz being the harmonic functions, we see that (3.1) and (3.2) are satisfied by

p = 2μ

(
∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z

)
. (3.4)

The suitable functions for the problem are

Bx =
∫ ∞

−∞
A(ξ)I1(ξr) e−iξz dξ cos θ, (3.5)

By =
∫ ∞

−∞
A(ξ)I1(ξr) e−iξz dξ sin θ, (3.6)

Bz =
{

1 − 1

2

(
x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)}∫
V

a(u) dv

R(x − u)
, (3.7)

B0 = ∂

∂z

∫
V

b(u) dv

R(x − u)
+

∫ ∞

−∞
B(ξ)hI0(ξr) e−iξz dξ, (3.8)

where a(u) and b(u) are unknowns to be determined. Let (ur , uθ , uz) be the velocity
components in cylindrical coordinates. The velocity at the tube wall is zero

ur = 0, (3.9a)

uθ = 0, (3.9b)

uz = 0. (3.9c)

Boundary condition (3.9a) can be written in an alternative form as

F[ur(h, θ, z); z → ξ ] = 0,

where F means the Fourier transform. If a(u) and b(u) are axisymmetric functions, we
obtain the following relation for solving unknown A(ξ), and B(ξ) after using relations (2.4)
and (2.6)

ξhI2(ξh)A(ξ) + ξhI1(ξh)B(ξ)

= 1

π i

(
ξI (ξ)|ξ |K1(|ξ |h) +

∂

∂ξ
{J (ξ)|ξ |K1(|ξ |h)}

)
, (3.10)

where I (ξ) and J (ξ) are defined by

I (ξ) =
∫

V

b(u)I0(ξr ′) eiξw dv and J (ξ) =
∫

V

a(u)f (ξ, r ′, w) eiξwdv

with

f (ξ, r ′, w) = 3

2
I0(ξr ′) +

ξr ′

2
I1(ξr ′) +

1

2
iwξI0(ξr ′).

Condition (3.9b) is automatically satisfied by this choice of functions. Condition (3.9c) can
be alternatively written as

F[uz(h, θ, z); z → ξ ] = 0

8
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from which we obtain another relation to solve unknown A(ξ) and B(ξ):

ξhI1(ξh)A(ξ) + ξhI0(ξh)B(ξ)

= − 1

π i

{
ξ 2I (ξ)K0(|ξ |h) +

(
2 + ξ

∂

∂ξ

)
{J (ξ)|ξ |K0(|ξ |h)}

}
+ i

v0

2
δ(ξ), (3.11)

where δ(ξ) is the Dirac delta function and we have used the known relation

1

π

∫ ∞

0
cos ξz dz = δ(ξ).

Therefore if we solve (3.10) and (3.11) simultaneously for A(ξ) and B(ξ), we obtain the
following equations:

A(ξ) = − 1

π i

[∫
V

a(u)

{
F(ξ, r ′, w)

�(ξh)
+ f (ξ, r ′, w)

(
G(|ξ |h) − 2

�(ξh)

)}
eiξw dv

+
ξ 2

�(ξh)

∫
V

b(u)I0(ξr ′) eiξw dv

]
− v0

2

δ(ξ)ξhI1(ξh)

i�(ξh)
, (3.12)

where

�(ζ) = −ζ 2{I2(ζ )I0(ζ ) − I 2
1 (ζ )}, G(|ζ |) = K0(|ζ |)

I0(ζ )
− I1(ζ )ζ

I0(ζ )�(ζ )

F (ξ, r ′, w) = I0(ξr ′)
{

3 +
ξ 2

2
(r ′2 − w2)

}
+

5

2
ξr ′I1(ξr ′) + iξw{3I0(ξr ′) + ξr ′I1(ξr ′)}

and

B(ξ)h = − 1

π i

[∫
V

a(u)

{
1

ξ
G(|ξ |h)F (ξ, r ′, w) + ξh2 f (ξ, r ′, w)

�(ξh)

}
eiξw dv

+ G(|ξ |h)ξ

∫
V

b(u)I0(ξr ′) eiξw dv

]
+

v0

2

δ(ξ)ξh2I2(ξh)

i�(ξh)
. (3.13)

The velocity components (ux, uy, uz) are zero on the surface of the ellipsoid. Thus if we
substitute the values of A(ξ) and B(ξ) given by (3.12) and (3.13) into Bx, By and B0 in (3.5),
(3.6) and (3.8), we obtain the following three conditions:

ux = ∂�

∂x
+ x� = 0, (x, y, z) ∈ S (3.14a)

uy = ∂�

∂y
+ y� = 0, (x, y, z) ∈ S, (3.14b)

where

� = − ∂

∂z

∫
V

b(u) dv

R(x − u)
− zL

∫
V

a(u) dv

R(x − u)
,

� = 2

π

∫
V

a(u)

∫ ∞

0

[
F1(ξ, r ′, w, z)

{
G(ζ)

I1(ξr)

r
+

ξI2(ξr)

�(ζ )

}

+ F2(ξ, r ′, w, z)

{(
G(ζ) − 2

�(ζ)

)
ξI2(ξr) +

ζ 2

�(ζ)

I1(ξr)

r

}]
dξ dv

+
2

π

∫
V

b(u)

∫ ∞

0

{
G(ζ)

I1(ξr)

r
+

ξI2(ξr)

�(ζ )

}
I0(ξr ′)ξ 2 sin ξ(w − z) dξ dv, (3.15)

9



J. Phys. A: Math. Theor. 42 (2009) 015501 D-S Lee

where

F1(ξ, r ′, w, z) = Re F(ξ, r ′, w) sin ξ(w − z) + ImF(ξ, r ′, w) cos ξ(w − z)

F2(ξ, r ′, w, z) = Re f (ξ, r ′, w) sin ξ(w − z) + Imf (ξ, r ′, w) cos ξ(w − z)

L = 1 − 1

2

(
x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)

and ζ = ξh.

uz = 2L
∫

V

a(u) dv

R(x − u)
+

∂

∂z

[
2

π

∫
V

a(u)

∫ ∞

0

1

ξ

(
F1(ξ, r ′, w, z)

{
G(ζ)I0(ξr)

+
ξrI1(ξr)

�(ζ )

}
+ F2(ξ, r ′, w, z)

{(
G(ζ) − 2

�(ζ)

)
ξrI1(ξr) +

ζ 2

�(ζ)
I0(ξr)

})
dξ dv

+
2

π

∫
V

b(u)

∫ ∞

0

{
G(ζ)I0(ξr) +

ξrI1(ξr)

�(ζ )

}
I0(ξr ′)ξ sin ξ(w − z) dξ dv

− ∂

∂z

∫
V

b(u) dv

R(x − u)
− zL

∫
V

a(u) dv

R(x − u)

]
+ v0

(
1 − r2

h2

)
= 0, (x, y, z) ∈ S. (3.16)

From conditions (3.14a) and (3.14b) we get the same results. Thus we have two equations
with two unknowns to solve. It is not convenient for us to solve these equations using the
method in section 2; a numerical method is more useful, so at this point we will employ the
Galerkin method.

Of interest here is the circumstance where the radius of the cylinder tends to infinity. All
terms involving h vanish, and pertinent functions for the solution are constants. So

a(u) = a1, b(u) = b1 (say).

Then from (2.16) we find that

� = −πza1χ + 2πzb1γ,

where

χ = abc

∫ ∞

λ

ds

�(s)
, γ = abc

∫ ∞

λ

ds

(c2 + s)�(s)
. (3.17)

Conditions (3.14) require[
−a1

dχ

dλ
+ 2b1

dγ

dλ

]
λ=0

= 0 or −a1 + 2
b1

c2
= 0.

With the help of this relation, the condition uz = 0 reduces to

v0 + (a1χ0 + 2b1γ0)π = 0, (3.18)

where the suffix denotes that the lower limit in the integrals (3.17) is to be replaced by zero.
Hence

b1 = 1

2
a1c

2, a1 = − v0

π(χ0 + γ0c2)
.

This is in agreement with Lamb [12, p 605].
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Figure 1. Streamlines (ψ/v0 (cm)) for flow around a sphere inside a cylinder of radius 1 cm.
Radius of sphere 0.5 cm.

Figure 2. Non-dimensional velocity component vr/v0 for a sphere of radius of 0.5 cm in a tube of
radius 1 cm.

4. Numerical examples

In this section, we present some numerical examples.
Stream lines using (2.36) are shown in figure 1. Comparing with figure 1 in Lai [14], the

agreement between the two is excellent. The values of J2 and J4 are found to be −2.504 and
−3.770, respectively.

In figures 2 and 3, we show the equi-velocity lines vr/v0, vz/v0 respectively, for the
sphere. In figures 1–3, the radius of the sphere is 0.5 cm and that of the tube is 1 cm.

We can calculate the pressure on the surface of the ellipsoidal obstacle in the inviscid fluid
by using Bernoulli’s equation. Thus, the difference in pressures is

p∞ − p

ρ∗ = 1

2

(|∇φ|2 − v2
0

)
,

11



J. Phys. A: Math. Theor. 42 (2009) 015501 D-S Lee

Figure 3. Non-dimensional velocity component vz/v0 for a sphere of radius of 0.5 cm in a tube of
radius 1 cm.

Figure 4. Non-dimensional pressure (p∞ − p)/ρv2
0 for an ellipsoid a = 5 cm, b = 4 cm and

c = 3 cm in a tube of radius of 12 cm in an inviscid fluid.

Figure 5. Non-dimensional pressure (p∞ − p)/ρv2
0 for an ellipsoid a = 5 cm, b = 4 cm and

c = 3 cm in a tube of radius of 15 cm in an inviscid fluid.

where ρ∗ is the density of the fluid. For numerical example we take a = 5 cm, b = 4 cm and
c = 3 cm. So k = 3/4, θ = sin−1(0.75) = 48.59◦, E = 0.859 and F = 1.0. In figures 4
and 5, we plotted (p∞ − p)/ρv2

0 versus z for h = 12 cm and 15 cm, respectively, when

12
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Figure 6. Pressure (p∞ − p)/2μv0 on the surface of a spheroid (a = b = 5 cm, c = 3 cm) in a
viscous fluid.

x = 0. The lower curve is a third-order ((1/h)3), and upper curve is a fifth-order((1/h)5)

solution.
As a final numerical example, we have calculated the pressure for the viscous fluid. In

figure 6 we present the variation of (p∞ − p)/2μv0 with respect to z on the surface of the
spheroid when x = 0. Here a = b = 5 cm and c = 3 cm.

5. Conclusion

We have presented the analytical solution of an irrotational, inviscid fluid flow around a triaxial
ellipsoid in a circular tube. Also, we dealt with a numerical solution for a viscous fluid when
the ellipsoid is axisymmetric. This solution agrees with the published accounts when the
radius of the cylinder approaches to infinity. The solution, when the radius of the cylinder is
finite, is compared with the result obtained by another investigator when the ellipsoid reduces
to a sphere. The excellent agreements between the solutions support the correctness of our
solution. The solution for the triaxial ellipsoid is used to compute the pressure on the surface
of the obstacle. Judging from the results for the infinite medium, the solution also appears to
be correct.

Appendix

b12 = I1,1,0b
2

(
1

2c2
+

1

a2

)
− I0,1,0

b2

2a2c2
− I1,1,1b

2c2

(
1

2c2
+

1

a2

)
+ I0,1,1

b2

2a2
,

b13 = I1,0,1c
2

(
1

2c2
+

1

a2

)
− I0,0,1

1

2a2
− I1,0,23c4

(
1

2c2
+

1

a2

)
+ I0,0,2

3c2

2a2
,

b21 = I1,1,0a
2

(
1

2c2
+

1

b2

)
− I1,0,0

a2

2b2c2
− I1,1,1a

2c2

(
1

2c2
+

1

b2

)
+ I1,0,1

a2

2b2
,

b22 = I0,2,0b
2

(
1

2c2
+

1

b2

)
− I0,1,0

1

2c2
− I0,2,1b

2

(
5

2
+

b2

c2
+

c2

b2

)
+ I0,1,1

1

2
+

2

abc3
,

b23 = I0,1,1c
2

(
1

2c2
+

1

b2

)
− I0,0,1

1

2b2
− I0,1,23c4

(
1

2c2
+

1

b2

)
+ I0,0,2

3c2

2b2
,
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b31 = I1,0,1
3a2

2c2
− I1,0,0

a2

2c4
− I1,0,2

3a2

2
+ I1,0,1

a2

2c2
,

b32 = I0,1,1
3b2

2c2
− I0,1,0

b2

2c4
− I0,1,2

3b2

2
+ I0,1,1

b2

2c2
,

b33 = I0,0,2
3

2
− I0,0,1

1

2c2
− I0,0,3

15c2

2
+ I0,0,2

3

2
+

2

abc3
.
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